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We discuss various temperature jump methods for the accurate determination of the activation energy 
AH of creep for a linear viscoelastic material, and carry out a numerical computation in a discrete 
relaxation model to show that the effect arising from the temper,~lure dependence of the compliances 
(c~A T effect) quickly decays after the temperature jump. A general and compact expression is then 
derived for the creep rate of a viscoelastic solid under constant stress and subject to arbitrary tempera- 
ture variations. Application of the expression to various experimental situations is discussed, and the 
double T-jump method is extended to cases in which a temperature pulse of arbitrary shape is imposed 
on the sample. A systematic analysis shows that the eAT effect makes a significant contribution to 
the expression only during a short period immediately after a T-jump and that it is otherwise totally 
negligible for any reasonable distribution function in relaxation time. Measurements of AH for poly- 
propylene at 40°C by single and double T-jump are in good agreement and support this theoretical 
prediction. The double T-jump technique is so precise that observations of variation of AH with retar- 
dation time is now possible. 

INTRODUCTION 

The accurate determination of the activation energy M-/for 
creep is of considerable practical interest, since it allows the 
prediction of long-term creep behaviour from short-term data 
at elevated temperatures. On the theoretical side, it would 
answer the questions of whether, for a particular mechanism 
2if/is constant for all elements of the distribution of retarda- 
tion times, and what its stress dependence is. This in turn is 
crucial to an understanding of the origin of the distribution 
in retardation time and of creep as a rate process. 

The most common and long-established method for deter- 
mining M-/in the linear region is, of course, t ime-  
temperature superposition ~ derived from the equation of 
linear viscoelasticity. It states that the time-dependent creep 
J[To, t/a(T)] at temperature T O is related to the compliance 
J(T,t) at temperature T by2'3: 

J TO, ~ - + 1 - Ju(To) ( l )  

where b(T) and c(T) are constants describing the temperature 
dependence of the relaxed and unrelaxed compliances, 
JR and Ju, respectively: 

JR(T)  - Ju(T)  = b(T) [JR(To) - Ju(To)] (2) 

Ju (T)  = c(T)Ju( To) (3) 

a(T) is a shift factor, which, except for ~ relaxations of 
amorphous polymers, is related to the activation energy AH 
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through the Arrhenius equation~: 

(4) 

X being the dimensionless parameter X = AH/RT O. 
If both b(T)  and c(T) are assumed equal to 1 then accor- 

ding to equation ( I )  theJ (T,t) curve can be horizontally 
'shifted' onto the J [T 0, t/a(T)] curve if J(T,t) is plotted 
against logt. The shift distance gives a(T) whereby AH can 
also be deduced through equation (4). This, however, is a 
highly inaccurate procedure: for instance, AH so deduced 
for the ~, relaxation of poly(methyl methacrylate) has a 50% 
error, which is quite typical 2. The inaccuracy arises mainly 
from the fact that the method is susceptible to very small 
departures of b(T) and c(T) from unity, which would lead to 
an effective adjustment of the value of J(T,l) o n  the right of 
equation (1) through both the lib(T) factor and the presence 
of the second term on the right. The slope of J(T,t) with res- 
pect to logt is sufficiently low that such an adjustment even 
though small in magnitude, has a crucial effect on the out- 
come of the superposition. 

Some progress has been made in case of the/3 relaxation 
of poly(methyl methacrylate) 2 and the a relaxation of linear 
polyethylene 4 when one makes the less restrictive assump- 
tion b(T) = c(T) 4 = 1, which still simplifies equation (1) by 
eliminating the second term on the right. Thus: 

lnJ T 0, = lnJ(T,t) - lnc(T) (5) 

For poly(methyl methacrylate) 2 high frequency modulus 
data were used to yield c(T). Equation (5) was then used 
to obtain superposition. For linear polyethylene, c(T) and 
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Figure 1 Dependence of log 1; on log t for discrete model calcu- 
lation described in equation (1 1 ): AJ 0 is the amplitude of each 
relaxation element. (a) Single T-jump experiment: positive T-jump 
at t a = 60 see from T O to T; quanti ty qr yields AH equation (7): 
(b) double T-jump experiment: positive T-jump at t a = 60 sec from 
T O to T and return jump to T O at t b = 120 sec, AT 1 = 60 sec; for t > 
t b the rate lags behind the rate observed isothermally at T O (oqw); 
the time lag is At 0 which yields AH, equations (10) and (4) 

a(T) were obtained using the principle of  opt imum fit4: 
when logJ(T,t) is plotted against logt a particular pair of  
values of  logc(T) (vertical shift) and loga(T) (horizontal 
shift) produce opt imum fit between logJ(T, t )  and the 
master curve. 

The values of c(T) were in fair agreement with high fre- 
quency data. There are polymers, however, for which the 
assumption b(T) is plainly not true: no combination of ver- 
tical and horizontal shifts can superimpose logJ(T, t )  onto 
logY [T 0, t/a(T)l. 

The method of superposition is also inaccurate. For in- 
stance, the possibility of detecting a small variation in AH 
for different elements in the distribution of retardation time 
is quite out of  the question. Any method that involves the 
use of absolute values of  b(T) or c(T) must, at present, be 
unreliable since these crucial quantities are normally not 
absolutely determinable. 

Two methods have been developed to overcome this dif- 
ficulty. It is the purpose of this paper to subject them to 
detailed theoretical and experimental scrutiny. The oldest 
and least precise is the single T-jump method,  first described 
by Tietz and Dorn s and used to determine AH for the creep 
of metals. The application of this technique to viscoelastic 
creep was developed theoretically by McCrum and Morris 6, 
and has been applied to the creep of crystalline polymers 7,s, 
biological tissue 9 and amorphous polymers 1°-14. A creep 
experiment is initiated at temperature T O by applying a 
constant stress o to the specimen at time t = 0. At a later 
time t a the temperature is changed abruptly to temperature 
T. For a linear viscoelastic solid the ratio of  the instanta- 
neous creep strain rates at time t a at the two temperatures 
Tand  TO is2'S: 

In  - ( 6 )  
Z/o(ta) a(T) 

/3 is a parameter which depends on the viscoelastic properties 
of  the sotid 2 and ~ a parameter which accounts for the per- 
turbation due to thermoelastic stresses generated by the T- 
jump Is. AH is obtained with considerable precision when 
both ~3 and K are unity. Little can be said about K : if thermo- 
elastic stresses exist (K > 1) as in linear polyethylene 15, the 
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m e t h o d  fails. In  p o l y p r o p y l e n e ,  however ,  i t  is c lear tha t  
K = ] 16. In  w h i c h  case under  the cond i t i on  13 = I we have 

f rom equa t i on  (4)  and (6) :  

RTTo 7(ta) 
AH - in - -  (7) 

(T-  TO) ~o(ta) 

The condition under which/3 is effectively equal to unity is 
as follows. 

According to the theory of linear viscoelasticity2: 

/3= 1 + [b (T)  - 1] A (8) 

f dlnr~O(lnr) 
T 

_ o o  

A = (9) 

f qbo(lnr)ex p - (ta/z) 
dlnr 

T 

~0 (lnr) is the normalized distribution of retardation times 
at T O (ref 3). Now we may write: 

b ( T ) =  I + a A T  

for small values of  AT, a being the temperature coefficient 
of  [JR(T) - JU(T)]. In the absence of a precise value of a,  
and for purposes of trial calculation in this paper, we will 
assume it takes the values (i) zero, (ii) 4 x 10-4°C -1 and 
(iii) 40 x 10-4°C -1. The anticipated value lies within this 
bracket probably between zero and 4 x 10-4°C -1.  But 
taking the most extreme and unlikely value, a = 
40 x 10-4°C -1, we have for ]AT[< 5°C: 

[ b ( T )  1] < 0 . 0 2 .  

It follows from equation (8) that i fA - 1,/3 will differ from 
unity by only - 2%. Now it will be seen from equation (9) 
that A - 1 will be, for fixed t a, an approximation valid at 
temperatures low in the relaxation region: in this case nume- 
rator and denominator in equation (9) will be essentially 
equal. As the temperature is raised and for fixed ta this 
will cease to be so because of the term exp - (ta/r) in the 
denominator. There will result a rapid increase in A. Thus 
unless the low temperature approximation holds,/3 >> 1 (see 
equation 8) and equation (7) fails. It is of  course possible 
to determine A H  even under this condition 7 but the method 
involves considerable experimental work and analysis. 

There is a Catch-22 paradox implicit in the above state- 
ments, which was not appreciated formerly. It  may be stated 
thus with slight exaggeration. Equation (7) fails unless the 
low temperature approximation holds: the low temperature 
approximation holds only at temperatures low enough for 
creep rates to be negligible. The detailed resolution of this 
paradox, which is one of the major purposes of  this paper, is 
sketched in the next paragraph. 

The course of  a single T-jump experiment is illustrated in 
Figure la which shows calculations for the discrete single- 
relaxation time model described below. For aA T = 0, the 
T-jump at ta = 60 sec causes log "~ to follow the course pqrs. 
The quantity qr yields AH, equation (7): q is easily ob- 
tained since measurements of'i, are taken right up to time 
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t a. But after the T-jump, even with the fastest equipment, 
it takes a number of seconds for the new temperature T to 
be established. Data can therefore only be observed reliably 
in the region s's and it is necessary therefore to extrapolate 
log~back to the point r. But in addition to rejecting data in 
the region rs' for experimental reasons we will show that 
the perturbation introduced by etAT =~ 0 is effective only 
in a region immediately after the T-jump, symbolized by rr '  
in Figure la. Thus the low temperature approximation holds 
if data in the region rr '  is excluded. For then, extrapolation 
of the valid data back to ta will generate the point r. 

The relative positions o f r '  and s' may be reversed. The 
position of r' is a detailed theoretical problem elucidated 
below: the position ofs '  depends on the efficiency of the 
T-jump equipment. It is determined by monitoring the tem- 
perature. Under the conditions of the single T-jump experi- 
ments described in this paper, the evidence is that r '  precedes 
s',  as indicated in Figure la: the data excluded for experi- 
mental reasons include all the data which should be excluded 
for theoretical reasons• The evidence for this statement is 
derived largely from measurements of AH using the new 
double T-jump technique, which is not subject to comparable 
uncertainty. 

The determination of AH by double jump 17 requires two 
experiments, one with T-jump and one without, both at the 
same stress. This is illustrated by calculation using the dis- 
crete relaxation time model given below. In the experiment 
without T-jump log ~ follows the line pqw, Figure lb, at 
temperature T O . The specimen is then permitted to recover 
under zero stress. The second experiment is then performed 
with a T-jump from T O to T1 at t a = 60 sec and the reverse 
jump from T 1 back to T O at tb = 120 sec. As illustrated in 
Fibure lb  for (T 1 - TO) = AT 1 = +3°C, log~ follows the line 
pqrstuv. For eta T = 0 theory shows that the time shift At 0, 
between the lines uv and qw is related to a(T) bylV: 

1 A t 0  
- -  - 1 ( 1 0 )  
a(T) Atl 

in which At I = (tb - ta), the time for which the specimen 
was at TI: At0 is independent of t. Thus measurement of 
At 0 yields AH. After the second T-jump, there is a period of 
time of the order of seconds, indicated by uv'  in Figure lb,  
in which the data will be unreliable due to time taken for the 
temperature to come into equilibrium at TO. In practice, 
therefore, the time shift is measured between the lines v'v 
and qw: data in the region uv'  is rejected. It will be shown 
below that equation (10) fails at times immediately after 
the T-jump, symbolized by uu'  in Figure lb. This failure is 
due to the assumption etAT = 0. In the perturbed region uu' 
the separation in time between the lines uv and qw is no 
longer constant. This can be recognized from the data and 
the position of u '  established unambiguously. 

The two major experimental problems are: (i) the rise 
time of temperature from T O to T(and in the double T- 
jump experiment also from T back to TO); (ii) the maintain- 
ance of precise temperature control particularly when the 
creep rate beomes low. Hooley, Caruthers and Cohen I~ 
have investigated theoretically the influence of a non- 
instantaneous T-jump and have shown how effects due to 
long rise times may be corrected• Their analysis included a 
study of creep rates following an arbitrary temperature his- 
tory. This problem we approach below following the discrete 
model calculation (equation 11). We then describe experi- 
mental factors with particular attention to the rise time. 

In the Results section we describe the experimental observa- 
tion of AH by single and double T-jump in polypropylene 
at 40°C. The results and applications of the techniques are 
then discussed. 

THEORY 

Discrete retardation time model 

Before a full treatment of creep under arbitrary tempera- 
ture variations and with a general distribution function of the 
retardation time, it is helpful to extract some of the results by 
the use of a simple model to avoid mathematical 
complications. 

In this model it is assumed that creep at temperature T 
proceeds by a number of discrete time constants T i (i = 1,2, 
• . . ,  N), which are related to the corresponding time con- 
stant r6 for reference temperature T O by: 

"r i = a (T)  7"~ 

It will be assumed that the amplitudes associated with each 
z b are all equal, A J  0, and that the temperature dependence 
of each AJ 0 is: 

A J  = b ( T ) A I  0 

For the purpose of this calculation the effect of A J  0 vary- 
ing with Tb has been shown to be negligible by trial 
calculation. 

In the single T-jump experiment, a shear stress o is applied 
at t = 0 with the specimen at temperature T 0. The creep 
rate at time t is: 

e x p  - 

i 

(11) 

If a T-jump is imposed at time t a then for t > ta : 

,,,, (,,) ] 
o A J 0 -  ~- exp ~ r i ] exp--  ~ +etAT 

l 

(12) 

These curves are shown in Figure 2 for AT= +3.0°C. To 
make the calculation as relevant as possible the parameters 
are chosen to be as typical as possible for polypropylene 
under the conditions imposed in our experiments: T O = 
40°C; t a = 60 sec; AH= 34.5 kcal/mol; r~ = 0.12 x 10 n sec, 
0.3 x 10 n sec, 0.6 x l0 n sec, forn = 0, 1,2 . . . . .  6. Values 
of r~ outside the band quoted above have negligible effects 
on the result. It will be seen from Figure 2 that the e A T  
term in equation (12) causes the three curves to fan out at 
times just after the T-jump. The a = 0 and a = 4 x 10 -4 
curves fall into coincidence to within 1%, 5 sec after the T 
jump; the et = 0 andet = 40 x 10 -4 curves coincide to within 
1%, 250 sec after the T-jump. 

Figure 3 shows curves calculated from equations (1) and 
(2) for A T =  -3.0°C. Coincidence to within 1% of the et= 
0 line occurs 20 sec after the T-jump (et.= 4 x 10 -4) and 
400 sec after the T-jump (et = 40 x 10-'~). The perturbation 
introduced by finite et occurs over a longer interval than for 
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Figure 2 Single T-jump experiment, positive AT: dependence of 
log~ on logt for discrete retardation time model: A, isothermal, 
T o = 40.0°C: B, C and D, T o = 40.0°C with T-jump of +3.0°C at t a = 
60 sec; B, c~ = 0; C, a = 4.0 x I0-4;  D, a = 40.0 x 10 -4 

a positive T-jump. Nevertheless, if the data is excluded in 
the appropriate region of time after the T-jump, extrapola- 
tion of tog~back to time t a will yield a value of log,(t) 
representative of the t~ = 0 curve and which may be inserted 
therefore in equation (7) to yield AH. The determination 
of the appropriate region of time in which to exclude data 
is clearly of central significance, a point to which we return 
later. 

In the double T-jump experiment the creep rate after 
the second jump ( t  > tb) is: 

s(t) exp / 

i 

1 Atl ] 

+otAT [ -  1 + e x p - - - r i  ] ) (13) 

Figure 4a shows this curve plotted for the model (log "~ 
• " - t -  O versus linear t) with A T =  -3 C, t a = 60 see, t b = 120 sec for 

or= 0, 4 x 10 -4 and 40 x 10-4°C -1. Also plotted in Figure 4 
is equation (11) which gives q (0  at T O for the experiment 
with no T-jump (full line). It will be seen from Figure 4a 
that the ~tAT term in equation (13) causes the curves to 
diverge immediately after t b but to come into coincidence 
with increasing time. For A T = -3.0°C the t~ = 0 curve co- 
incides to within 1% of the ot = 4 x 10 -4 curve for ( t  - tb) = 
10 sec. and the a = 40 x 10 -4 curve for (t  - tb) = 60 see. 
For A T = +3.0°C, coincidence to within 1% of the a = 0 line 
occurs for (t - tb) = 20 sec (a = 4 x 10 -4) and ( t  - tb) = 
120 see (or = 40 x 10-4). 

The analytical procedure for the double T-jump experi- 
ment is illustrated with this data in Figures 4b and 4c. The 
A T = +3.0°C data shown in Figure 4a is plotted in Figure 4b 
with a time shift of +41.5 sec. The A T =  -3.0°C data of 
Figure 4a is plotted in Figure 4c with a time shift of -24 .9  
sec. These are the time shifts computed for the model ac- 
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cording to equation (10). As anticipated, the cz = 0 data 
fall on the no T-jump curve. The a = 4 x 10 -4 and 40 x 
10 -4 points diverge as expected at short times after the 
second T-jump. 

The strength of the double T-jump technique is illustrated 
particularly well in Figure 4b. The experimental procedure 
is to plot the no T-jump and T-jump data on separate sheets 
of transparent graph paper. The T-jump graph is placed 
above the no T-jump graph and translated along the t-axis. 
Coincidence of the two sets of data yields the time shift 
At 0. Data in the early time region perturbed by the a A T  
can be recognized as not falling on the no-jump line and can 
be rejected from the analysis. The time shift measured from 
the unperturbed data at longer times can then be used in 
equation (10) to obtain a(T)  and hence AH. 

We performed a considerable number of double T-jump 
experiments and did not once observe in polypropylene 
graphical evidence of the czAT perturbation. Data in the 
region 30 sec after tb were excluded for experimental 
reasons. The perturbed points fall within this region and 
will doubtless be observed with faster T-jump equipment 
now being brought into use. 

The origin of the perturbation introduced by the a A T  
term is easily understood from the discrete single retardation 
time model. Consider a single T-jump at ta = 60 sec from 
T O to T. At T O at 60 sec, relaxation time 6 sec and shorter 
no longer contribute significantly to ~ : they are completely 
relaxed having each contributed their full relaxed compo- 
nent o A J  0 t o the total strain. Consider one of these relaxa- 
tion times, T/o(T/o < 6 sec). Immediately after the T-jump the 
instantaneous strain in the/ th  element at T is oA J0  but the 
equilibrium strain is now aA J. The element will therefore 
immediately creep from the instantaneous value to the 
equilibrium, the resulting additional strain being a ( A J  - 
A J0). This quantity is indeed small compared to oAJ0:  

o ( A  ] - A Jo) 
o a ] 0  

= czAT= 0.004A T (14) 
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Figure 3 Single T-jump experiment, negative AT; dependence of 
Io9~ on logt for discrete relaxation time model: A, isothermal, To = 
40.0°C: B, C and D, T o = 40.0°C with /'-jump of -3 .0 °C  at t a = 
6 0 s e c ; B , a = 0 ; O , e = 4 . 0 x  1 0 - 4 ; D , a = 4 0 x  10 - 4  
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assuming the most extreme value ofc~ = 40 x 10-4°C -1 
Thus a A T =  -2 .5°C will cause a 1% lowering in equilibrium 
strain. The significant point is that the rate at which the j th  
element relaxes from o A J  0 to oA J will be extremely rapid 
immediately after the T-jump, since we are considering only 
short relaxation times, r~ < 6 sec. The instantaneous rate at 
t a at T is: 

txA TA J0  
~(ta) - 

a( T) r/o 

Clearly for any finite o~AT(no matter how small) ~/(ta) -~ ~ as 
r~-~ O. Thus, it is the short relaxation times which are the 
origin of the a/XT perturbation and it is this fact that causes 
the perturbation to decay rapidly after ta. 

It will be seen then that an absolute determination o fb  T 
is not necessary: we require merely to exclude perturbed data 
points and since we deal with strain rates "i,(t), the additional 
parameter c(T)  (equation 1) which is an additional compli- 
cation in t ime- tempera ture  superposition is of  no signifi- 
cance. 

General theory 
Having seen the sort of  result that one can expect from a 

model of  discrete retardation time, we now proceed to the 
general case. Suppose starting at t = 0 a specimen of a visco- 
elastic material is put under constant shear stress, o, and it is 

subsequently subject to a prescribed but completely arbitrary 
variation in temperature, T(t) (Figure 5). Its distribution 
function ¢ [lnr, T(t)] is then a function of time, with a time- 
dependent shift factor a(t) = a[T(t)] ,  which is related to 
AH through equation (4) where the reference temperature 
T O is conveniently chosen to be T(O). 4~ is related to the 
reference distribution function 4~0(lnr) [ -  q~(lnr, TO) ] by 
~b[lnr, T(t)] = 4~0[lnr - lna(t)]. The unrelaxed and relaxed 
limiting compliances J u  and JR would be constantly 
changing, thus making the difference compliance factor 
b(T)  also a function of time: b(t) = b [T(t)] .  

The shear strain 7 (0  of the specimen at time t is, accord- 
ing to the principle of  superposition, an integral over the 
strain in all the preceding time intervals, with the appropriate 
exponential decay of each contribution taken into account. 
Consider the strain arising at time t from the stress pulse ap- 
plied between time v and (v + dv), Figure 5. In the first 
instance we assume a single retardation time z which is sub- 
ject to the continuously varying relative shift factor 
a(u)/a(v), u being the time variable changing from v to t 
(Figure 5). According to the principle of  superposition, this 
contribution is: 

t 

Av f du 
A3'(V --* t) = o A J ( v ) - ~ - e x p  - a(ulr/a(v) 

p 
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Figure 5 A stress pulse is applied between times v and v + du. The 
temperature has a known but quite arbitrary time dependence. The 
time dependence of the strain AT (r '-+ t) is given by equation (17) 

where the integral in the exponential factor takes into account 
the effect of  temperature variation on the relative shift fac- 
tor. We now further take into account the distribution in 
relaxation time by introducing the distribution function 
~b[lnr, T(v)] appropriate for the temperature at time v, and 
integrate over lnr. Thus: 

f (lnr) _ 
A-/(v -~ t) = oA I (v)Av | d - -  ¢[lnr, T(v)l exp 

J T 

du 

a(u)r/a(v) 
y 

(15) 

Shifting 4> to 4~0 through a(v) and A J(v) to A J  0 through 
b(v), we obtain: 

A'ffv ~ t) 

o,5I 0 
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t t 

f I 1 1  [ f d u ]  dvb(v) d(lnr)~0(lnr)r a(v) a( t ) r  exp - a ~  

0 v 

= ~ (t) ] , ( 0 )  1 { aJ o +a(t)fd(lnr)~---(~ In-L) b(t)- 
t t 

f dvb(v) d e x p [ -  f ~ ] )  
0 v 

If  we assume b(t) = c(t) = 1 then the first term on the 
right disappears and the integration over v could be imme- 
diately carried out, yielding: 

+(t) l f d(lnr) ~(lnr) [ exp 
oAjo  a(t)  r rA( t )  

(18) 

(19) 

where A (t) -1 is the time-averaged inverse shift factor de- 
fined as: 

1 1 

A(t)  t 

t 

a(.) 
0 

(20) 

The fact that b(t) and c(t) ¢ 1 means the following remain- 
der term R 0 should be added onto the right-hand side of(19) :  

Ju(O) 1 f d(lnr)¢o(lnz) { - + b(t) - 1 - 
R 0 = 6(t) A Jo a(t) r 

t 

vf  1 [ f da(~)r] i i ~ )  - d du b(vlA d ( l n r l ¢ o ( l n r ) a ( ~  exp - d v [ b ( v ) - 1 ]  dvv e x p -  

P 
0 v 

(16) 

The total strain 7(t) is obtainable by integrating AT(v - t) 
over v from 0 to t and added onto it the instantaneous res- 
ponse to stress, i.e. o Ju(t): 

t 

f 7(0 _ c(t + dvb(v) (lnr)¢ 0 (lnr) a(v)r 
oAJ o 

o 

t 

e,p[S 
P 

The strain rate 7(t) = dT(t)/dt is: 

(17) 

+ b(t) ( d(lnr) ¢0(lnr) 
a(t) J r 

~(t) J.(0) 
- e ( t )  

aAJ 0 AJ 0 

(21) 

Equations (19)- (21)  are our main results. 
In the rest of  this section we ignore R 0. The effect of  

R 0 perturbation is described in the Discussion. 
To see the significance of equation (19) consider T(t) = 

T O , i.e. the sample temperature is held constant for all time, 
so a(t) = b(t) = c( t )  = A( t )  = 1. Denoting ~ by 70 for this 
case, we recover the familiar formula: 

f,,,n,, 
where the notation f0(t)  has been introduced for future con- 
venience. By the change of  variable of  integration k = I / r ,  
equation (22) shows that f0( t  ) is but the Laplace transform 
of ~bo, the latter being regarded as a function of k: 

fo( t  ) = f dke-kt¢o(k ) (23) 

0 
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Figure 6 Time dependence of temperature in the arbitrary tempera- 
ture pulse experiment 

As discussed in detail in Appendix 1, this allows an explicit 
calculation in close analytic form of the distribution function 
¢o from the experimental values of 70 by inverse Laplace 
transform. 

From equations (19) and (22) it is apparent that so long 
as the R0 term is negligible then all creep rate curves q(t) 
produced by arbitrary temperature variations are reducible to 
the basic functional formf0(t)  by means of the parameter 
a( t)  -1, the instantaneous inverse shift factor and A (t)-1,  
the time-averaged inverse shift factor ~s. Thus: 

oAJ  0 a(t)  fo (24) 

and equation which may also be derived following Hopkins is 
procedure. 

Applications 
It is quite simple to apply the general result equations 

(19) or (24) to any particular thermal history, since one need 
only evaluate the time-averaged inverse shift factor in each 
case according to equation (20). 

For instance, in case of the single T-jump experiment 
T(t) = T O + A T 0 ( t -  ta), where A Tand t a are the magni- 
tude and time of the temperature jump, respectively, and 
O(t) is the usual step function defined to be 0 for t <  0 
and 1 for t >  0. Consequently a ( t )  = 1 + (al - 1 ) 0 ( t -  ta), 
where a 1 = a ( T  O + A T), and substitution into equation (20) 
givesA(t) - I  = [1 + ( a l  - 1)ta/t]/al for t>~ t a. Denoting 
the creep rate in this case by 7s J, equation (24) shows that: 

,s,,,,, [;( ,)] 
o a f  0 al fo + 1 - al-- ta (t >1 ta) (25) 

Setting t = t a we immediately recover the previous result 
~sj(  ta)l'~O(ta) = l/a 1. 

In the double T-jump experiment with temperature incre- 
ment A T imposed between ta and tb one has: 

T ( t )  = T O + A TO(t - ta)O(tb -- t )  (26) 

with a similar expression for a(t). Direct integration yields 
A(t) -1 = 1 - (1 - 1/a l )At / t  for t f> tb, that is, denoting 
the creep rate by 7D J, we have: 

[ ( 1 ) ]  
7DJ(t) - f  0 t - -  1-- At (t>~tb) 
aAJ 0 ~1 

(27) 

The shift factor is again al = a(T 0 + 7). It is therefore im- 
mediately clear that 7DJ(t) = "Y0(t - AtDj), 
where A t D j  = ( 1  - -  1/al)At  is the constant time interval 
separating the 7DJ and 70 curves, and that al and hence AH 
can be accurately determined from these two curves. 

There is now a natural extension of the double T-jump 
method. In experimental situations where abrupt changes 
of temperature as characterized by 0 functions are not prac- 
tical one need only impose a temperature pulse of known 
(but nevertheless quite arbitrary) profile T(t)  on top of T O 
between t = ta and t = t b (Figure 6). In that case equation 
(26) still holds, even though A T is now a known function of 
time. Similarly it is straightforward to show that the expres- 
sions for A(t) -1 and for the creep rate qp (i.e. equation 27) 
remain valid, so that one can again experimentally determine 
a time interval Atp which separates qp from % at all levels 
of creep rates. The shift factora 1 so deduced, al = 1 - 
Atp/At ,  is however related to the activation energy in a more 
complicated manner: 

1 1 

a 1 At  

tb 
To : °,,exp(,[1 TomTit',]) 

ta 

(28) 

Changing the variable of integration to u'= t' - t a and deno- 
ting T(u ')/T O by y(u'),  this can be rewritten as: 

1 1 

a I At 

A t  

f du'eXh (u') 

0 

(29) 

where h(u') = 1 - 1/[1 +y(u ' ) ] .  Giveny(u') ,  this equation 
allows a determination of), (or AH) from a 1 in principle. 

In practice X can best be found by iteration. Suppose X0 
is a trial value and its difference from the true value X is 
relatively small, so that exp [AXh(u')] can be approximated 
by the first order expansion 1 + A)`h(u '), where AX = )` - 
X0. It then follows from equation (29) that, in this 
approximation: 

'< > _ _ _  eXoh(u') 
al 

)` =)`o + (h (u')eXo h (u')) 

(3o) 

where ( ) indicates time-averaging over u' from 0 to Atl and 
generally requires numerical integration. One can therefore 
obtain an improved value )'1 for X from X o, substitute the 
former into the right-hand side of equation (30), and repeat 
the process. When the resultant value ),' becomes highly 
accurate the second term on the right vanishes (as is expected 
from equation 29), and the equation reduces to the self- 
consistency condition X = X'. In an actual example in which 
this is carried out the iteration converges very quickly to a 
final value of)`. 

EXPERIMENTAL 

The specimen of isotactic polypropylene (Propathene PXC 
8830) was received from Imperial Chemical Industries Ltd 
in the form of a rod which had been extruded by a process 
designed to keep voiding to a minimum. Its density at 23°C 
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Figure 7 Result of group of double T-jump experiments: t ime depen- 
dence of "yfor t > t b at 40.0°C for three runs, with temperature pulse 
(8, ~ and co) and one wi thout  {fl). Solid lines are obtained by method 
B: the points wi thout  vertical pointer give data computed according to 
method A; the points with vertical pointers give the same data plotted 
with horizontal shifts along the time axis so as to coincide with the/3 
curve: 6 shifted by +41.0 sec; c~ shifted by --32.2 sec; co shifted by 
-84 .0  sec. The imposed experimental conditions (values of AT, At t )  
and the derived results (Ato, AH) are given in Table 1 

was 0 .905 g /cm 3. I t  was mach ined  i n t o  a th in  wa l l ed  tube 
o f  d imens ions:  leng th  60  ram,  i n te rna l  radius 3 .94  ram,  wa l l  
th ickness 0 .23 ram.  

The tube was t he rmos ta t i ca l l y  c o n t r o l l e d  b y  a f l o w  o f  
wa te r  wh i ch  passed rap id l y  b o t h  outs ide and inside the tube.  
The facility for a fast T-jump was obtained with equipment 
similar to that described by Matthews and McCrum ~9. Two 
baths of deionized water are maintained at T O and T. At the 
start of the experiment the water in the T bath is pumped 
through the cavity surrounding the specimen, and up into a 
small surge tank from which it falls by gravity into the T O 
bath. At the time of the T-jump, valves are switched so that 
the water in the T bath is pumped into the cavity instead of 
water from the T O bath. The pumps are of high capacity and 
the water flows at a fast rate through the cavity in plug flow 
at the time of the T-jump. Because of the thin wall thickness 
the specimen comes into thermal equilibrium with the flow- 
ing water within one second. 

The value of A T was obtained using three copper-  
constantan thermocouples in series placed in the cavity close 
to the specimen. The EMF was displayed on a chart recorder 
so that the sharpness of the T-jump was monitored. The 
thermocouples were calibrated against an accurate mercury 
and glass thermometer. 

There are two time constants controlling the onset of 
thermal stability after the T-jump. The first is of order 3 sec 
and controls 90% of the T-jump. The second time constant 
is of far smaller amplitude and about 10 times longer. As an 
example in one experiment with a final AT of 2.29°C the 
recorded values were at times after T-jump: 

4sec: AT=2.16°C; 30sec: AT=2.30°C 

lmin:  AT=2.29°C; 2min: AT=2.28°C 

4min: AT= 2.28°C; 6 min: AT= 2.29°C 

The first time constant depends on the rate of flow of water, 
thermal capacity of the pipes and cavity, etc. The main ex- 
perimental problem is the second and longer time constant. 
It is caused by the fact that after the T-jump the return line 
from the surge tank has to be switched from the T O to the 
T-bath. A small amount of water enters the T-bath imme- 
diately after the switch at a temperature close to T. This 
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slightly perturbs the equilibrium of the T-bath which takes 
several tens of seconds to equilibriate. This perturbation was 
reduced by the following steps: 
(1) retarding the switch of the return flow from the surge 
tank by a few seconds; 
(2) enlarging the baths to 25 1; 
(3) by pre-heating(or pre-cooling) the T-bath. 

This latter step when performed with finesse, produces 
an extremely sharp and clean T-jump. The amount of pre- 
heating (or pre-cooling) is well below 0. I°C for T-jumps of 
the usual size (IA T I<  3°C). The normal temperature fluc- 
tuation of the bath at 40 ° when in equilibrium is -+0.01°C. 

The specimen was mounted in a torsional creep machine 2. 
The rotation of the specimen was observed with an optical 
lever with a throw of 9 m. The time dependence of the def- 
lection of the light spot was observed with a graphispot. The 
shear strains were between 0.0015 and 0.0025, within the 
range of linear viscoelasticity. 

RESULTS 

Double T-jump experiment 
The measurements of AH by both single and double T- 

jump were all obtained at 40°C. The specimen was main- 
tained at this temperature for over I00 h before measure- 
ments commenced. Apart from the period of the T-jump, 
the specimen was kept continuously at 40°C for the dura- 
tion of the experimental period. Each experiment was com- 
plete within 700 sec. The specimen was then left for at 
least 3 h to recover under zero stress before the next 
experiment. 

I fx  is the deflection of the light spot as recorded on the 
graphispot chart paper, then it follows that "~(t) cc 5c(t). 
Values ofx(t) were obtained from the chart paper and the 
differentiation performed by two independent methods. 

Method 'A" ~/(t) obtained by local differentiation: 

~(t)= 
q(t + a t ) -  ~ / ( t -  at) 

28t  

8 t being chosen to keep/53' approximately constant. The 
time lag At0 is then obtained graphically as described above. 

Method 'B'. The time dependence o fq  is fitted by poly- 
nomials in lnr. The time derivatives are then obtained by 
analytic differentiation and At0 obtained point-by-point. 
This is done over a range of creep rates. A final value of 
At 0 is then obtained by taking a weighted average over the 
entire range of creep rate. The weight used is the inverse 
square of the error in At0, as computed from the errors in 
the coefficients of the polynomials. 

Method 'A' is simple in conception and application, and 
can be easily applied to the entire creep curve with equal 
certainty, even though it lacks sensitivity. In applying 
Method 'B' it was found that the creep curves (recorder pen 
displacement ~ 8-15 cm, read to 0.01 cm) could be fitted 
extremely well (usually better than 0.06%) by either third 
or fourth o~:der polynomials. However, as expected, the fit 
is less reliable near the ends of the curves. The method can 
therefore only give values of At 0 corresponding to the cen- 
tral portion of the creep curves. 

Twelve measurements of AH were obtained, six with 
positive A T and six negative. The experiments fell into 
groups, each group containing one isothermal reference ex- 
periment. Results from one group are shown in Figure 7. 
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Table 1 Experimental details of a group of double T-jump experiments at T O = 40.0°C. T-jump from T O to TI (~T  = T t -- To) for time At l ,  
produces time shift At 0. The elapsed time t e is the time specimen has been maintained at T O (apart from T-jumps of short duration) prior to 
the experiment. ~ is the isothermal reference experiment 

Method 'A" Method 'B' 

t e A T  ~T1 A t  o AH ~ to  AH  
Run (h) (o C) (sec) (sec) (kcal/mol) (sec) (kcal/mol) 

c= 312 --2.62 87.0 32.2 34.1 33.7 36.1 
/3 326 0 . . . . .  
/~ 333 2.83 61.0 --41.0 35.7 -42 .5  36.7 

356 -2 .93  201.5 84.0 35.5 84.3 35.7 

The experimental details for this group are recorded in 
Table 1. 

It was found that the data points computed by methods 
'A' and 'B' were in excellent agreement; see Figure 7. It will 
be seen also from Figure 7 that there is no sign of an t~A T 
perturbation at short times after tb of the type illustrated in 
Figure 4. No systematic departures at short times of the 
type shown in Figure 4 were observed in any of the experi- 
ments. We conclude that under the conditions of our experi- 
ment the data excluded for experimental reasons (region 
uv', Figure lb) include the data perturbed by the t~A T term. 

The mean value of AH for both positive and negative 
values of AT computed by methods 'A' and 'B' from the 
twelve experiments is: 

AH = 34.7 + 0.3 kcal/mol 

There were small systematic differences observed between 
values computed for positive and negative values of A T. 
The mean values of AH for positive A T were: 

AH(+,A) = 35.4 -+ 0.2 kcal/mol 

AH(+,B) = 35.3 -+ 0.3 kcal/mol 

and for negative A T: 

AH(- ,A)  = 33.4 -+ 0.5 kcal/mol 

AH(--,B) = 34.8 + 0.4 kcal/mol 

A 'Students' - t  analysis of the data shows that the 
differences: 

AH(+,A) - AH(--,A) = 2.0 -+ 0.6 kcal/mol 

AH(+,B) - A H ( - , B )  = 0.5 -+ 0.5 kcal/mol 

are statistically significant. The mean of the +ATvalues from 
methods 'A'  and 'B' differ by 0.1 kcal/mol, a difference 
which is not statistically significant. This is not so for - A T :  

A H ( - , B )  - A H ( - , A )  = 1.4 + 0.7 kcal/mol 

'Students' -t analysis shows this difference to be statistically 
significant. The likely origin of this small difference is des- 
cribed in the Discussion. 

It will be noticed that the errors (standard deviation over 
square root of number of observations) are greater for nega- 
tive AT than positive. This is due to the fact, as may be 
seen from equation (10), that positive values of A T lead to 

0"7 ~/ ",, 

Q 0-4 ~ ~ ~  

T~ 0 2  

o 

3 o ,  

0 0 7  

10 . . . . . .  6o ,00 26o ' 460 '  ' 7 6 6 '  
Log t (sec) 

Figure 8 Result of group of single T-jump experiments showing depen- 
dence of log 1" on Iogt: - 0 - ,  isothermal at T O = 40.0°C: the other two 

o . O curves are for ZxT = +2.40 and AT = --1.99 C apphed at t a = 60 see: , 
data computed according to method A; ¢, data computed according to 
method B. Values of log ,},for t < 60 sec for  the two T-jump experi- 
ments are not plotted since they coincide with the isothermal data. The 
derived values of AH are 30.4 kcal/mol (+2.40°C) and 35.6 kcal/mol 
(-1.99°C).  AH (kcal/mol): A, 50; B, 45; C, 40; D, 35 

larger time shifts than negative values of A T (note Figure 4). 
For negative AT the time shift At0 can at most equal Atl.  
For positive A T the time shift can exceed At 1 for values of 
A T >  4°C. 

Single T-jump experiment 
In order to compare the double T-jump with the single 

T-jump experiments, two groups of single T-jump experi- 
ments were performed at T O = 40.0°C. Three experiments 
were performed in each group: a creep curve at 40.0°C with- 
out T-jump and two T-jump experiments, one with positive 
and the other negative A T. 

Values of ~,0(t) and ~,(t) were computed according to 
methods 'A'  and 'B'. Figure 8 shows the isothermal data 
for T O = 40.0°C and data for t > 60 sec for values of AT= 
2.40°C and A T =  -1.99°C. The data computed according 
to methods 'A' and 'B' were in good agreement. The best 
extrapolation of ~(t) back to ta = 60 sec came from method 
'B' and yielded values of AH = 30.4 kcal/mol (+2.40°C) and 
AH= 35.6 kcal/mol (-1.99°C). The second group of single 
T-jump experiments yielded AH = 29.7 kcal/mol (+2.01°C) 
and AH= 32.4 kcal/mol (-2.13°C). The mean value of all 
four experiments is 32.0 kcal/mol. A discussion of these 
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values with those from the double T-jump experiment will be 
found below. 

DISCUSSION 

There are three topics which will be examined. In greatest 
detail, the effect of  the c~A T perturbation on the observed 
values of  AH by both double and single T-jump. This is the 
primary purpose of  the paper. In less detail we discuss the 
classical hypothesis that AH is constant for all elements in 
the retardation spectrum. The experiments were not de- 
signed to test this hypothesis. However, the small but statis- 
tically significant discrepancies between the positive and 
negative double T-jump experiments bring it into question. 
Finally we discuss a hypothesis basic to the theory of thermo- 
viscoelasticity ~8'6'3 which may be stated thus: after a T-jump 
J u ( T ) ,  JR (T )  and ¢(lnr) take up values which are functions 
of  T alone and independent of t e, the elapsed time at T. 

The AH hypothesis  

The hypothesis that AH is constant for all elements in the 
distribution of  retardation times, is not  necessarily particu- 
larly restrictive. For example consider a temperature of 40°C 
and assume the observed A H =  34.5 kcal/mol. Consideration 
of  the measurements of  the imaginary part of  the dynamic 
compliance at ~1 Hz for polypropylene due to Passaglia and 
Martin 2°, shows that the retardation spectrum is distributed 
approximately as follows at 40°C: shortest retardation time 
10 -1 sec: retardation time of  the maximum at the centre of 
the relaxation, 105 sec. The low frequency half of  the relaxa- 
tion is thus six decades wide. Now at a temperature of  40°C 
and at a creep time of t = 100 sec retardation times in the 
region of 10 to 103 sec alone contribute significantly to ~,. Thus 
the hypothesis AH constant for data taken at 40°C at t = 
100 sec, implies that A H  is effectively constant (i.e. to 
within the error of the experiment to be interpreted) for 
the retardation times of  interest: for those between 10 and 
l03 sec and not for the whole spectrum. 

In general it is correct to accept a widely used hypothesis 
over an alternative, other things being equal. The reason is 
that being widely used it might be thought to be widely 
tested. This is not so in the case of  the hypothesis AH a 
constant for all elements of  the retardation spectrum. The 
precision of measurement in the past has been so poor that 
its validity is essentially untested. 

What of  the alternative, that AH varies and ~'~ (value of  
at T -1 = 0) is constant? (We leave for the present the 

most physically realistic but more complicated hypothesis 
of Zener 21, that both AH and ~-~ differ for each element.) 
Consider the retardation time z = 102 sec at 40°C and let its 
value of  AH = 34.5 kcal/mol: if the value of  Too holds for all 
elements in the distribution of  retardation times, it then 
follows from simple graphical analysis that for the retarda- 
tion time ~- = 10 sec at 40°C, A H =  32.9 kcal/mol and for r 
= 103 sec at 40°C, A H =  35.8 kcal/mol. It will be seen that 
at 40°C in the region of r = 102 sec the predicted change in 
AH is of  the order 1.5 kcal/mol per decade. 

For imprecise experimentation this change is without sig- 
nificance and would not noticeably perturb the result. How- 
ever, our experiments and in particular the double T-jump 
experiment, are on the verge of  a precision sufficient to ob- 
serve such small changes. Because of  this it is necessary to 
consider the possibility that AH is not, in fact, constant. 
This follows because the positive and negative T-jumps 
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sample the retardation times in a slightly different manner. 
For instance for (t - tb) = 40 sec the A T =  +3 ° experiment 
samples retardation times centred in the region of 300 sec 
whereas for the same value of  (t  - tb)  the sampling of  the 
A T-- - 3  ° experiment is near 100 sec, approximately half a 
decade apart. According to the above estimate, this could 
result in a difference in AH ~ 3/4 kcal/mol. The AH from 
the - -AT experiment would be the lower by a quantity of  
this order. The evidence from the double T-jump experiment 
supports to some extent this result. The values of  AH ob- 
tained from negative temperature jumps are lower than the 
values obtained from positive jumps. This conclusion will 
be rigorously tested in further experimentation using the 
double T-jump technique in which AH will be determined 
at temperatures in the region 30 ° to 80°C. 

The aAT perturbation : theoretical aspects 

The main theoretical result [equation (19) or equivalently 
equation (24)] and its applications to the determination of 
AH have been obtained on the assumption that the remainder 
term R 0 is negligible. This has been shown to be true for the 
simple model discussed above. We would now examine this 
assumption more systematically and in greater detail. 

Let us start with a feature common to all three applica- 
tions of the theory. That is, q(t) is of  interest at time t later 
than a certain moment tf, when the temperature is held at a 
constant value Tf  (which may or may not equal TO), such 
that J'(t) = 0, ~ (t) = 0, b(t)  = b f, a(t)  = af  for t >i tf. Part of  
the integration over v in equation (21) can then be carried 
out, and R 0 becomes: 

i s  / ( t , )  RO = -  d(lnz) q~O(lnr) ( b f -  1)exp - 

af • 

, , ,, ,i i) f - dv [b(v) - 1 ] dvv exp - -~. + 

0 v 

(31) 

where t '= t -  tf. 
In case of the single T-jump experiment b(v)  = 1 for v ~< 

t f  such that the second term on the right of  31 vanishes and 
so from 24 and 25 we obtain the following fractional 
error ~ sJ for neglecting the remainder term R 0 (here denoted 
a sRs j ) :  

~SJ ---- ~Sj[Oz~j 0 = ( b f -  1) (32) 

Similarly, for the double T-jump experiment b f  = af  = 1, and 
b (v) = b 1, a (v) = a 1 for the period t a < v < ta + A t. The 
integrals in equation (31) over u and v can be easily carried 
out, resulting in the following fractional error tSDj for neg- 
lecting R 0: 

~DJ ~ ,jtD j/0. ~k[ 0 

At 

= ( b ~  - 1 )  

fO tP + ta + 

(33) 
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In case the temperature increase AT imposed in the interval 
(t a, t a + At) is not constant in time, it can be shown that 
equation (33) still applies, except that bl  ~ max b(v) for 
t a <<.v<~t a +t, and 

a l  1 

ta+ At  

f [Ata(u)] -1 du 

a 

Since f0 is a superposition of exponential decay functions 
the ratio fo(q)/fo(q + q 1) appearing in equations (32) and 
(33) would tend to 1 as q ~ 0% and so from these equations 
it is seen that for large t' = t - t f  the error in neglecting R 0 
is mainly of the order b - 1, i.e. less than 1% for AT equal 
to a few degrees. As a matter of fact, in case :If = To (AT 
may or may not be time dependent) equation (33) shows 
that 5DJ -'~ 0 as t' ~ oo, when f0(t ')  ~ fo ( t '  + At/al).  In 
other words, the effect of the R 0 term eventually disappears 
completely in case of the double T-jump experiment and 
also the arbitrary temperature pulse experiment. This does 
not detract from the fact that immediately after the termina- 
tion of temperature variation, i.e. at t' ~- 0 the R 0 term has 
a very large effect, because 40 (lnr) has a great deal of short 
decay time components and f0 (0) = fd(lnr)q~0(lnr)/r is very 
large when compared to f0 (ta). It is therefore of much prac- 
tical interest to make an estimate of the time interval it 
takes for R 0 to become negligible. As shown in Appendix 2 
this in general happens at t c -~ 0.3 aft  a and 0.3 [t a + (At/al) ] 
for the single- and double-T (as well as pulse) jump experi- 
ments, respectively. If previous parameters are used, then 
numerical values for t c are of the order 20 -40  sec, in agree- 
ment with the estimates made in the Theory above. In more 
general terms, it is seen that the use of equations (19) or 
(24) is valid when t '  is of the same order of magnitude as tf, 
the precise value depending on the accuracy desired. 

Finally, the R 0 term can also be estimated in the most 
general case. Transforming the integral over v in equation 
(21) by integration by parts, interchanging the order of in- 
tegration in lnr and v, making use of the defining equations 
(20) and (22), one can rewrite R 0 as follows: 

t 

RO = ~10 c(t) + ~ A(t) A(v) (34) 

0 

The first term does not need much comment: it clearly de- 
pends on the rate of temperature change at t. Upon appli- 
cation of the mean-value theorem for integrals, the second 
term can be written as: 

t I~ a ] 
[b(t)- 1] fO A(t) A(va) /a(t) 

where v a is a certain average value of v satisfying 0 < v a < t. 
Using our previous notation, the ratio of this term to ~(t)/  
oA J 0 is: 

t Pa ] 

fO A-(t) A(va) 
= [ b ( t ) -  ll  (35) 

 0121 

would be of the same order as b(t) - 1 unless v a is very 
close to t, resulting in a very large factor fo(O)/fo [t/A(At)] 
on the right. But that would happen only ifb(v) is very 
large (that is, there is an extremely large temperature change) 
at a time close to t. Thus, in conclusion, the R 0 term is 
negligible and our expression 24 for ~(t) is valid in general 
except immediately after extreme temperature variations, 
which can be regarded as a natural extension to the results 
on 6Sj and ~DJ. 

The aA T perturbation: experimental aspects 
It was anticipated that any a A T  perturbation would: 

(1) increase the observed AH above the true value: (2) be 
more troublesome in the positive AT experiment than in 
the negative (see Figure 4). It might then be argued that a 
small a A T  perturbation exists, that it is not detected by eye 
during the graphical analysis of method 'A' and that it per- 
turbs the positive AT values making them slightly larger 
than the negative. 

This argument is difficult to reject entirely, but we find 
it less persuasive than the alternatives. These are: (1) that a 
small difference in AH exists (as argued in the discussion 
above); (2) that when the time shift At 0 is measured in 
methods 'A' and 'B' the eye and computer weight the data 
differently and in a systematic way. In experiment a 
(Table 1) a misreading of At 0 by only 1 sec causes an error 
in AH of 1.3 kcal/mol. The extent of the systematic dif- 
ference in the time shift observation between methods 'A' 
and 'B' required to explain the low value of AH( - , A )  is thus 
quite small. It could conceivably be due to the eye giving 
slightly more weight to the data from the shorter retardation 
times which are dominant at small values of (t - tb) and 
which by the arguments of the previous section could have 
slightly lower AH. This is a matter which will be decided 
by further experiment. 

That no eta T perturbation was ever observed in double 
T-jump is fairly certain: we cannot be so sure this is so for 
single T-jump. In single T-jump the effect of aA T perturba- 
tion is to enhance a curvature in the log~/versus logt plot, a 
curvature that already exists for the curve aAT= 0 (see 
Figures 2 and 3). Nevertheless the fact that the measured 
values in single T-jump, AH = 32.0 kcal/mol were slightly 
lower than the double jump values, is strong evidence that 
the single jump data is unperturbed. 

The small systematic difference between the AH values 
from double jump and single jump experiments, is probably 
dne mainly to errors arising in the extrapolation procedure 
in the single jump analysis. In our experience the computer 
extrapolation is to be preferred to a graphical extrapolation. 
Nevertheless, the computer fit to the data is least satisfactory 
at the two ends of the recorded set of data points. The 
reliability of the extrapolation is particularly sensitive to the 
fit to the data points at the shortest times after the T-jump. 

There is also the possibility that the difference could be 
due to a variation of AH with retardation time. The im- 
posed conditions of the single jump experiments placed the 
dominant retardation times lower than in the double jump 
experiments. 

The elapsed time effect 
The effect is well-known in amorphous 22-24 and semi- 

crystalline polymers and has been observed in measurements 
of specific volume and mechanical properties. Most study 
has been centred in the region of the glass transition by 
dilatometry where the effects are greatest. The usual ex- 
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perimental procedure is to quench from above Tg to Tbelow 
Tg and to follow the isothermal volume contraction at T. 
Large elapsed time effects are observed which give rise to 
changes in both volume and viscoelastic properties. In the 
glass transition region of a semicrystalline polymer analogous 
volumetric effects are anticipated and have been observed 
by Davis and Eby 28. But at temperatures well removed from 
Tg in polypropylene, Struik has observed that quenching 
from 120°C produces large changes in compliance at 20°C 
as a function o f t  e at 20°C: (the Tg of polypropylene is 
-15°C). Now it is possible that this effect is due in some 
degree to a minute amount of recrystallization, considering 
the proximity of 120°C to the annealing temperature of the 
specimen 135°C and the melting point. The effect has been 
confirmed at temperatures where recrystallization is un- 
likely 3° (for instance quenching from 60 ° to 40°C). In linear 
polyethylene large elapsed time effects are observed at tem- 
peratures down to -190°C being particularly intense in the 
viscoelastic relaxation regions 26'27. 

In the design of our experiments we have sought to mini- 
mize and detect any possible elapsed time effect in the fol- 
lowing way. First, the specimen of polypropylene was an- 
nealed at 130°C, slow-cooled, thermally cycled between 20 ° 
and 80°C and then maintained at 40°C for I00 h before 
measurements commenced. Second, the T-jumps were of 
small magnitude, less than 5°C, and mostly in the region of 
3°C. Third, elapsed time effects are likely to be entirely dif- 
ferent in single and double T-jump. The double T-jump in 
particular is particularly well designed to be exempt. Fourth, 
the effects of both positive and negative values of AT were 
observed. It will be seen from the Experimental that in the 
double T-jump experiments the systematic differences bet- 
ween the positive and negative A T values of AH were of 
order 4%. Now if an elapsed time effect seriously perturbed 
the experiment it is most unlikely that the perturbation 
would have the same sign for positive and negative A T. If 
it were argued that this systematic difference of 4% were 
due to elapsed time effect then it would in any case be a 
small effect. In our view it is more likely that the difference 
is due to a small variation of AH with r, as argued in this 
section. The conclusion therefore is that the dominant 
effect of the T-jump is the temperature induced Arrhenius 
shift and that the analysis used in deriving the theory is 
not vitiated by elapsed time effects on I u ( T  ), JR(T) or 
~b(lnr). 

CONCLUSIONS 

The single and double T-jump techniques have been shown 
to be unperturbed by systematic errors which arise in other 
techniques due to the temperature dependence of the 
limiting compliances. The values of AH obtained by the 
two techniques are in good agreement. The precision of 
the double T-jump technique is such that small variations 
in AH with retardation time may be detected. 
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Linear viscoelastic creep: Fo C. Chen et al. 

APPENDIX 1 

Distribution function o f  relaxation times 
The curve of creep 7(t) at constant temperature could 

be fitted by a polynomial in lnt to very. high accuracy: 

N 

7(0 _ ~ an(lnt)n_ 1 
oA.I 

n=l 

(A1) 

For a time span o f 1 0 2 -  3 x 1 0 4 s e c t h e o r d e r o f f i t N -  1 
is usually chosen to be between 2 and 4 for best results, 
for which the deviation of data from fit would be well 
within 0.1% except near the ends of the curve, where the 
deviation rises to 0.1 to 0.3%. Differentiating equation 
(A1) we obtain ~/O/oAJo, off0: 

N 

fo(t) = ~ (n - 1)a n 

n=2 

(In t) n - 2 
(A2) 

Comparing this with equation (23) we see that the distri- 
bution function ~0(k) is simply the inverse Laplace trans- 
form of the series on the right of equation (A2). This 
could be carried out very easily, since it is knownt that 
the Laplace transform of (lnk) m is precisely a series of the 
form equation (A2), with its own characteristic coefficients. 
Simple algebra leads to the following general formulae, 
where L-1 indicates inverse Laplace transform: 

1 
L -1 - =1 

t 

L -1 = C 2 - - -  + 2Clnk +(lnk) 2 
6 

- 3 C(lnk) 2 - (lnk) 3 (a3) 

where C is the Euler number and 42 the second derivative 
of the Euler function evaluated at 1, i.e. 4"  (1): 

C -  lira 1 --  - Ins ~ 0.577215 
s~ o. m 

m=l 

1 
tp 2 =---2 ~ ~ - 2 . 4 0 2  

n=l 

Thus equations (23), (A2) and (A3) combine to give the 
following result for the distribution function, where we 
have reintroduced r = 1/k as the variable: 

"~ I.S. Gradshteyn and I. M. Ryzlik: Tables of Integrals, Series and 
Products (Academic Press, London, 1965), p 573-576 and p 943 
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Linear viscoelastic creep: F. C. Chen et aL 

N - 1  

@0 (lnr) = ~ cn(lnr) n -  1 

n=l 

(A4) 

The coefficients Cn of the first few terms are related to an 
in the original series, equation (A1), (for N up to 5) as 
follows: 

c1= a2 - 2Ca3 + 3(C2 - ~ - )  a4 + 4 [ t~2 + C ( ~ - C 2 ) 1 a 5  

c2 = 2a3 - 6Ca4 - 4 ( ~ -  - 3C2 ) a5 

c3 = 3a4 - 12Ca 5 

c 4 = 4a 5 (A5) 

It should be emphasized that equation (A1) is only valid 
over the specific time interval, say (t  1, t2), in which it has 
been fitted to data. Similarly, we expect the distribution 
function @0 (lnr) derived from the fit (i.e. equations (A4) 
and (A5)) to be correct only in approximately the same 
interval, i.e. for ~" in ( t l ,  t2). An actual example for creep 
data fitted over the interval t = 5 to 3000 sec shows that 
@0(lnr) for PP at 42.5°C is extremely flat over this region, 
implying an almost equal distribution of relaxation, but  
with a slight monotonic increase towards the long time 
region. 

APPENDIX 2 

The decay time for the b-1 effect 
To obtain an estimate for the time it takes for the b- 1 

effect to become negligible, we first look at the monotoni- 
cally decreasing ratiofo(w)/fo(W + wo) and confine our- 
selves to the time interval for which the parametrization, 
equation (A1), is valid. From equation (A2) we have: 

fO(W) = 1 + 

fo(w + wo) F(w + Wo) 

~< ( I + ~ - - ~ ) T /  (BI)  

where F(w) is the polynomial:  

N - I  

~ ( n -  1)an(lnw) n-2  

n=2 

and r /= max F /min  F over the time-interval concerned. For 
the example quoted in Appendix 1 the coefficients a n are all 
positive, such that F(w + wo) > F(w) and one can simply 
set r /= 1. In general we expect @0 to be a rather flat distri- 
bution and r / t o  be of  order 1. 

Combining equations (32) and (B1) (with w 0 = ta, w = 
t'/af) we see that 6sj  would be approximately 1.3 ( b f -  1) 
or less than 1% for t' > 0.3aft a. In case of  the double T- 
jump experiment there are two terms in the numerator  of  
equation (33), but  since fo(t ' )  always > fo [t' + At/al] 
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clearly fiDJ < ( b l  - l ) fo(t ' ) / fo(t '  + ta + At/al), and we can 
again apply equation (B1) to it, with w = t '  and w 0 = ta + 
At/al, leading to the condition that the R 0 term is negligible, 
i.e. 6Dj ~< 1.3 (b l  - 1), i f t ' >  0.3(t  a + At/al). The case of  
the arbitrary temperature pulse experiment yields the same 
result, except that  a i  -1 must be interpreted as the time- 
averaged inverse shift factor given by 29 and b l - 1 as the 
maximum value o fb ( t )  - 1 within the duration of  the tem- 
perature pulse. When typical experimental values are sub- 
stituted into these conditions, it is found that in practice 
they present no additional experimental problem at all, 
since one usually would have to wait a certain period after 
a sharp temperature change before temperature stabilizes 
and creep data become useful, and this already imposes the 
same (if  not more stringent) conditions on t ' .  

It is also possible to obtain a condition analogous to 
equation (B 1) for a more general distribution function 
@0(lnr), without the need of  explicitly using an experimen- 
tal parametrization, but since this leads to essentially the 
same result while involving a great deal more mathematical 
manipulsation, we do not feel it worthwhile to go into 
details. 
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NOTE ADDED IN PROOF 

See also the recent paper of C. d. Hooley and R. E. Cohen (Rheol. Acta 1979, 17, 538) who 
reach similar conclusions to those found here regarding the a~T effect in single T-jump. 


